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Resilient Modulus Data Analysis 

Mr values are used in pavement design as a measure of stiffness of unbound materials in the 
pavement structure. The Mr parameter is a highly stress-dependent parameter. Many non-linear 
constitutive models have been proposed that incorporate the effects of stress levels and predict 
Mr values. Most soils exhibit the effects of increasing stiffness with increasing bulk stress and 
decreasing stiffness with increasing shear stress (Andrei et al. 2004). A non-linear constitutive 
model (also called the universal model) proposed by Witczak and Uzan (1988) (Equation 1) was 
used in this study 
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where Pa = atmospheric pressure (MPa); σB = bulk stress (MPa) = σ1 + σ2 + σ3; τoct = octahedral 
shear stress (MPa) = {[(σ1-σ2)2+( σ2- σ3)2+( σ3-σ1)2]1/2} / 3; σ1, σ2 , σ3 = principal stresses; and k1, 
k2, k3 = regression coefficients. The k1 coefficient is proportional to Mr and therefore is always 
> 0. The k2 coefficient explains the behavior of the material with changes in the volumetric 
stresses. Increasing volumetric stresses increases the Mr value and therefore the k2 coefficient 
should be ≥ 0. The k3 coefficient explains the behavior of the material with changes in shear 
stresses. Increasing shear stress softens the material and yields a lower Mr value; therefore, the k3 
coefficient should be ≤ 0. 

The R2 values determined for this model were adjusted for the number of regression parameters 
using Equation 2 
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where n = the number of data points and p = the number of regression parameters. 

Determination of Dynamic Secant Modulus from Cyclic Stress-Strain Data 

The cyclic stress-strain data obtained from the resilient modulus test was used to estimate 
dynamic secant modulus (Es) to compare with dynamic elastic modulus measurements from the 
field. Secant modulus was determined from the slope of the line connecting the origin to a 
selected point on the stress-strain curve of a material, as illustrated in Figure 8. The difference 
between secant moduli and resilient moduli is the use of permanent strain instead of resilient 
strain in the calculations. 


